
Journal of Electrocardiology 71 (2022) 16–24

Contents lists available at ScienceDirect

Journal of Electrocardiology

j ourna l homepage: www. jecgon l ine .com
Agreement between respiratory rate measurement using a combined
electrocardiographic derived method versus impedance
from pneumography
Linda K. Bawua a, Christine Miaskowski a, Sukardi Suba b, Fabio Badilini a, David Mortara a, Xiao Hu c,
George W. Rodway d, Thomas J. Hoffmanna, Michele M. Pelter a,⁎
a School of Nursing, University of California, San Francisco, CA, USA
b School of Nursing, University of Rochester, NY, USA
c School of Nursing, Duke University Durham, NC, USA
d School of Medicine, University of Nevada, Reno, NV, USA
⁎ Corresponding author at: Department of Physiologic
University of California San Francisco, 2 Koret Way – N6
0610, USA.

E-mail addresses: Linda.Bawua@ucsf.edu (L.K. Bawua)
(C. Miaskowski), sukardi_suba@urmc.rochester.edu (S. Su
(F. Badilini), David.mortara@ucsf.edu (D. Mortara), xiao.h
grodway@med.unr.edu (G.W. Rodway), thomas.hoffmann
michele.pelter@ucsf.edu (M.M. Pelter).

https://doi.org/10.1016/j.jelectrocard.2021.12.006
0022-0736/© 2022 The Authors. Published by Elsevier Inc
a b s t r a c t
a r t i c l e i n f o
Keywords:
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Background: Impedance pneumography (IP) is the current device-driven method used to measure respiratory
rate (RR) in hospitalized patients. However, RR alarms are common and contribute to alarm fatigue.While RR de-
rived from electrocardiographic (ECG) waveforms hold promise, they have not been compared to the IPmethod.
Purpose: Study examined the agreement between the IP and combined-ECG derived (EDR) for normal RR (≥12 or
≤20 breaths/minute [bpm]); low RR (≤5 bpm); and high RR (≥30 bpm). Methodology: One-hundred intensive
care unit patients were included by RR group: (1) normal RR (n = 50; 25 low RR and 25 high RR); (2) low RR
(n= 50); and (3) high RR (n= 50). Bland-Altman analysis was used to evaluate agreement. Results: For normal
RR, a significant bias difference of−1.00 + 2.11 (95% CI −1.60 to −0.40) and 95% limit of agreement (LOA) of
−5.13 to 3.13 was found. For low RR, a significant bias difference of −16.54 + 6.02 (95% CI: −18.25 to
−14.83) and a 95% LOA of −28.33 to - 4.75 was found. For high RR, a significant bias difference of
17.94 + 12.01 (95% CI: 14.53 to 21.35) and 95% LOA of −5.60 to 41.48 was found. Conclusion: Combined-EDR
method had good agreement with the IP method for normal RR. However, for the low RR, combined-EDR was
consistently higher than the IPmethod and almost always lower for the high RR, which could reduce the number
of RR alarms. However, replication in a larger sample including confirmation with visual assessment is war-
ranted.

© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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Introduction

In hospitalized patients, abnormal respiratory rate (RR) (e.g.,
tachypnea, bradypnea) is often thefirst indication of impending respira-
tory arrest and/or the need for rescue intubation [1–4]. Visual
assessment of RR is insufficient because this measure is not obtained
frequently nor with a high degree of accuracy. Therefore, early recogni-
tion of respiratory compromise can be delayed and/or missed. In hospi-
tal settings that utilize electrocardiographic (ECG) monitoring, such as
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critical care and step down units, impedance pneumography (IP) has
been incorporated into these systems for continuous RR monitoring.

For the IP method, the algorithm that derives RR uses alternating
electrical currents measured on the torso [5,6]. While the IP method
uses the ECG lead wires and skin electrodes to deliver alternating cur-
rents, ECGwaveforms (i.e., P-wave, QRS, T-wave) are not used to calcu-
late the RR. Themajor advantages of the IPmethod are that it is safe and
simple to use and is integrated into current ECG monitoring devices.
However, signal interruptions (i.e., poor skin electrode contact, skin
electrodes fall off), as well as patient movement and cardiac artifact ef-
fect the accuracy of IP RR [7,8]. In addition, the hardware components of
the IP method (e.g., lead wires/cables) can be sources of IP measure-
ment error [9]. As a result, the IPmethod is prone to frequent RR alarms
that contribute to alarm fatigue in clinicians [7,9–13].

In one comprehensive study in 461 ICU patients (n = 77
beds),161,931 RR alarms (i.e., high and low parameter limit and apnea)
were found during the one-month study period or 68 RR alarms/bed/
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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day [7]. While the RR alarms were not annotated in this study (i.e., true
versus false), the investigators found that the IP respiratory waveform
was often flat in patients who were known to be breathing adequately
(e.g., no respiratory arrest or need for intubation). Therefore, while the
IP method has important advantages for RR assessment in hospitalized
patients, the data show that IP RR measurements are prone to false
alarms, which limits the value of this technology to identify patients
with respiratory compromise.

Given the problems with IP generated RR, researchers are exploring
alternative methods to measure RR using ECG waveforms (i.e., QRS and
R-to-R intervals) [14]. While the ECG-derived (EDR) method is not cur-
rently available for use in the hospital setting, this method has numer-
ous advantages [14]. For instance, like IP, the EDR method is non-
invasive; uses already existing data from bedside ECG monitors; and
RR assessments can be done continuously [15]. One study showed
that because ECG QRS amplitude changes are highly correlated with
tidal volume changes during breathing they may be more suitable
than IP for calculating RR [14]. In addition, the ECG derived method
has been used to identify abnormal respirations associated with sleep
disordered breathing [16–21]. However, similar to the IP method, the
EDR method is prone to signal quality issues, device failure, and/or pa-
tientmovement. In addition, the EDRmethod is less reliable in older pa-
tients due to the following factors: a decline in respiratory sinus
arrhythmia (RSA), which is used in the EDR method; age related ar-
rhythmias (e.g., atrial fibrillation); and the use ofmedications that effect
heart rate and rhythm (e.g., beta-blockers, antiarrhythmics) [14]. A
method that requires evaluation is one that combines both IP and ECG
signals alongwith themyogram. This combinationmay improve the ac-
curacy of algorithm-based RR assessment.

While visual assessment (VA) of RR is the non-invasive gold stan-
dard method, a great deal of interest exist in device driven methods
for hospital-based monitoring because RR changes can occur quickly
and could be missed by using VA alone [22]. The VA method can inter-
rupt a nurse'sworkflowbecause theymust stop care activities and care-
fully count full breaths for one minute. In addition, VA of RR can be
difficult in patients who are talking, not able to follow instructions
and/or cooperate.

In a prior study examining VA of RR, RR was often estimated,
guessed, omitted, or simply copied from a previous assessment [23].
In another study, nurses reported intentionally or unintentionally omit-
ting RR assessments over 90% of the time [24]. Finally, in a study that ex-
amined 62 patients with 1597 unique vital signs recorded, only one RR
assessment was documented per day, while multiple recordings of
blood pressures (5/day); heart rate (4.4/day); and temperature (4.2/
day) were documented (all p < 0.001) [25].

Only four studies have compared VA, IP, and EDR assessment of RR
[26–29]. Importantly, none of these studies compared all threemethods
in the same patient [22]. In the three studies that compared the VA and
IP methods [26,27,29], the upper and lower limits of agreement (LOAs)
between the two methods were extremely poor.

Other studies have evaluated the EDR method but did not include
confirmatory VA. One study found that RR algorithms that use ECG
waveform data performed better than RR algorithms that use only an
IP signal [15]. In a second study, three different algorithm-based RR
methods were compared to RRs obtained using an air flow sensor
[14]. The three algorithm-based approaches included: an EDR only
method; an electromyogrammethod; and a RSA method. The RR accu-
racy ranged from 80% to 90% depending on the performance measure
used in this study. Of note, these authors concluded that a combination
of these different methods, rather than one, may improve the overall
performance of RR assessment.

Given the importance to RR assessment and the identified chal-
lenges associated with the VA and IPmethods, a need exists to evaluate
alternative methods to objectively measure RR in hospitalized patients.
An alternative approach to the limitations identified for the individual
algorithms discussed above, would be to create an algorithm that
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combines all of the available physiologic signals (i.e., IP, oxygen satura-
tion [SpO2], ECG and the myogram), to create a “combined-EDR
method.” Recent work from our research team has evaluated the accu-
racy of an ECG only method to detect abnormal breathing associated
with Cheyne-Stokes respirations. In one study that included hospital-
ized cardiac patients (n = 90) and a group of healthy community
based participants (n=100), it was found that patients with acute cor-
onary syndrome had 7.3 times more Cheyne-Stroke respiration epi-
sodes (>3 consecutive cycles of hyperpnea/hypopnea with apnea) as
compared to healthy community-based adults [19]. In a separate
study that included 461 ICU patients, patients who had a higher rate
of Cheyne-Stroke respirations (mean number/h = 1.19 ± 1.12) had a
higher frequency of cardiorespiratory arrest when compared to ICU pa-
tients with lower rates of Cheyne-Stokes respirations (mean number/
h = 0.02 + 0.02; p = 0.001) [30].

In the current study, we build on this work by examining the agree-
ment between the IPmethod and a combined-EDRmethod in a group of
adult ICU patients. The purpose of this study was to examine the RR
agreement between the IP and a combined-EDRmethod for: (1) normal
RR (≥12 or ≤ 20 bpm); (2) lowRR (≤5 bpm); and (3) high RR (≥30 bpm).

Materials and methods

Research design and setting

This study is a secondary analysis of data from the University of
California, San Francisco (UCSF) Alarm Study, detailed methods were
published previously [7]. In brief, the UCSF Alarm studywas an observa-
tional study designed to examine the total number of alarms generated
from bedside physiologic monitors during a one-month period (March
2013). Data were collected from three adult ICUs (i.e., cardiac [16
beds]; medical/surgical [32 beds]; and neurological [29 beds]). Each
bed was equipped with a Solar 8000i bedside monitor (version 5.4 soft-
ware, GE Healthcare, Milwaukee, WI). The study used a data capture
system to collect all available physiological signals and alarms from
the bedside monitor. The physiologic data passed securely through the
hospital's Enterprise network to a secure server in our research lab for
off-line analysis. For this study, we utilized the following physiologic
data: IP, SpO2 and ECG waveforms. The study was approved by the In-
stitutional Review Board (IRB) with a waiver of signed patient consent
because physiologic monitoring is done as part of standard care and
the data were analyzed retrospectively.

Sample

The primary study collected data from 461 consecutive ICU patients.
For the current study, we randomly selected 50 patients who had one
or more low RR IP parameter limit alarms (≤5 bpm) and another 50 pa-
tients who had one or more high RR IP parameter limit alarms
(≥30 bpm). These parameter limit alarmswere selected based on the cur-
rent alarm configuration used in our bedside ICU monitors (described
below). From the sample of 100 patients, we randomly selected a sub-
groupof 25patients fromeachgroup (i.e., 25 patientswith lowRRparam-
eter limit alarms and 25patientswith high RR parameter limit alarms) for
the normal RR comparisons. A normal RRwas identified prior to the IP RR
limit alarm(i.e., lowor highRR).Whilewe attempted to identify “normal”
RRs (i.e., between 12 bpm and 20 bpm) using this approach, a small sub-
set of the ICU patients were consistently tachypneic (i.e., >20 bpm) be-
cause of their acute illness. Therefore, we used a clean IP RR signal prior
to a low or high RR alarm for the normal RR comparisons.

In addition to the RR data we collected the following variables from
the electronic health record: demographic (i.e., age, gender, and race)
and clinical characteristics (i.e., BMI, current smoker, impaired cognitive
status, tremor); ICU type (i.e., cardiac, medical/surgical, neurological);
use of mechanical ventilation; andmean ICUmonitoring time. These var-
iables were selected because of their potential impact on IP RR [27,31,32].
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IP method

To derive RR using the IP method, a drive-and-measure circuit is es-
tablished that delivers two out-of-phase AC-coupled currents into a com-
bination of ECG leadwires and their corresponding skin electrodes [8,33].
During inspiration, as the chest expands, resistance to theflowof the elec-
trical current increases which increases impedance. Alternatively, during
expiration, as air leaves the lungs impedance decreases. The difference in
the amplitude of the injected current during inspiration (chest expands;
impedance rises) and expiration (chest recoiles: impedance falls) is
displayed as an IP waveform on the bedside physiologic monitor. The
manufacture of the bedside monitor used in this study adds a “marker,”
or artificial flag, on the IPwaveform so that clinicians can identify inspira-
tion (upward flag) and expiration (downward flag). In addition to the IP
waveform, a numeric RR value is displayed on the bedside monitor.

The bedsidemonitor used in this study, uses either lead I or lead II to
measure the IP RR. Therefore, when lead I is selected, the AC signal is ap-
plied to the right arm and left arm electrodes. Whereas the right arm
and left leg electrodes are used if lead II is selected for IP RR. The IP
ECG lead (i.e., I or II) is a pre-determined setting in the bedsidemonitor.
However, the leadcan be changed by the user based onwhether the pa-
tient is a chest or an abdominal breather. The default IP ECG lead used in
our ICUs is lead II. As mentioned previously, while ECG lead wires and
skin electrodes are used to measure an IP RR, the ECG waveforms are
not used. However, the IP signal can be disrupted by motion artifact
and or ECG lead failure (i.e., broken or frayed), poor skin electrode con-
tact, or the skin electrode(s) fall off.

Combined-EDR method

The algorithm for the combined-EDR method was created by bio-
medical engineers in the UCSF Center for Physiologic Research. This al-
gorithm uses the IP waveform, the plethysmograph from the oxygen
saturation sensor (SpO2), ECG signals and the myogram to derive RR.
Below we describe in more detail the signals used in the combined-
EDR method.

ECG signals used for RR detection
The combined-EDR algorithm uses all seven of the available ECG

leads from the bedside monitor including leads: I, II, III, aVR, aVL, aVF
and one V lead,which is V1 at our hospital. The combined-EDR algorithm
uses changes in R-to-R intervals to identify RR. Breathing causes slight
changes in heart rate (i.e., increased heart rate with inspiration; de-
creased heart rate with expiration) that can be detected as RSA. While
RSA is easily observed in young healthy people, the heart rate tends to
become more fixed with age and co-morbidities (e.g., heart failure, dia-
betes) [14,34]. Therefore, using only R-to-R intervals to measure RR is
not sufficient for accurate and reliable RR calculations. Therefore, in addi-
tion to the R-to-R intervals, the literal QRS area, or the sum of all of the
QRS complexes from all available ECG leads, is used. For example, during
inspiration and expiration the heart moves relative to the ECG skin elec-
trodes on the body surface, which are at fixed locations on the chest. The
amplitude (height) and width (duration) of each waveform that make
up the QRS complex (i.e., Q, R, and S waves) are measured and used in
the combined-EDR algorithm. Finally, the combined-EDR method uses
the myogram from the ECG skin electrodes on the torso. During inspira-
tion and expiration both chest muscle and diaphragm effort are mea-
sured from the skin electrodes during breathing.

Additional physiologic signals for RR detection
In addition to the ECG features andmyogram signal described above,

the combined-EDR method incorporates the IP and SpO2 signal. The
combined-EDR algorithm generates an RR by examining and combining
all of these features. A good quality signal from at least two of the afore-
mentioned parameters (ECG, myogram, IP and Sp02) must be present
for the combined-EDR algorithm to generate a RR.
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Data acquisition for comparing the IP versus combined-EDR methods

IP data
The IP RR data from the bedside physiologicmonitors were stored as

Standard for the Exchange of Product Data (STEP) or STP files. The STP
files were converted into binary files and exported into the Continuous
ECG Recording Suite (CER-S software program,Amps LLC, New York,
NY). The CER-S software allowed for qualitative assessment of the IP
waveforms at the time that comparisonswere done between the IP ver-
sus combined-EDR methods. To optimize the workflow in the CER-S
tool the following stepswere taken: multi-day recordings were format-
ted in 24-h periods from midnight to midnight; data were compressed
using a loss-less proprietary algorithm, which varied between a three
and four-fold rate, depending on the input signals; and all of the data
were de-identified. Fig. 1 illustrates a screen shot of the CER-S software
tool that was used to identify the IP RR for comparisons with the
combined-EDR method.

Combined-EDR data
The physiologic signals (i.e., IP, SpO2, ECG [seven leads], and the

myogram) were processed with the combined-EDR algorithm. The en-
tire ICU monitoring period was processed and a combined-EDR RR
was generated every 30 s. These data were exported into Microsoft
Excel (2021 version, Microsoft Corporation, RedmondWashinton) as a
comma separated value (.csv)file in order tomake comparison between
RRs generated by the IP and combined-EDR method. The IP RR data
(normal, low, and high RRs) identified in the CER-S software tool and
the corresponding timeof the combined-EDRRRwere used for the com-
parisons. The times for the comparisons between the IP and combined-
EDRmethodswere within one-minute of each other. Two reviewers in-
dependently collected the RR data. The reviewersmetweekly and over-
all inter-rater agreement was 95%.

Data analysis

Descriptive statistics were generated for each of the RR groups. The
groups were compared on demographic, clinical characteristics, ICU
type and use of mechanical ventilation. Data are expressed as means
and standard deviations and percentages. Scatter plots were generated
to evaluate the relationships between the IP and combined-EDR RRs. In
addition, for each RR group, the agreement between the two methods
(IP versus combined-EDR) was evaluated using Bland-Altman analysis
[35]. This approach included plots of the mean difference in RR between
the two methods against the average of the two measurements. In the
case of strong agreement, themean difference between the twomethods
is expected to be 0 or close to 0. An advantage of a Bland-Altman analysis
is that it can uncovermeasurement bias (i.e., a significant slope on the re-
gression line of the scatter plot) related to the underlying true RR in the
event that one of the two methods was systematically worse at accu-
rately capturing values at either end of the range of all RRs.

The Bland-Altman analysis reports the estimated difference between
the two measurements with 95% limits of agreement (LOA) around the
estimate (mean difference of ±1.96 SD) and a test of bias in the form
of ordinary least of square (OLS) regression on these estimates. Statisti-
cally significant differenceswere noted at a p-value of <0.05. Descriptive
analyses were performed using SPSS version 27 (IBM Corporation,
Armonk, NY). The Bland-Altman analysis was performed using R version
4.0.0 and BlandAltmanLeh package v0.3.1 statistical software [35–37].

Results

Demographic and clinical characteristics

The demographic and clinical characteristics, ICU type and use of
mechanical ventilation by RR group are presented in Table 1. The time
differences between the two RR methods used for comparison was



Fig. 1. A and B. Illustrates the continuous ECG recording suite (CER-S) software program used to compare the impedance pneumography (IP) respiratory rate (RR) to the combined-
electrocardiographic (EDR) method. The IP waveform is labeled as Resp in the figures.
A. The left side of the figure shows several IP RR parameter limit alarms (low and high) in an intensive care unit patient. The highlighted IP alarm is for a low parameter RR alarm (RESP
0< 5;where 0=RR and 5= the parameter limit alarm setting). The panel to the right of the alarm is a one-minute tracing of ECG signals (leads I, II, II and V1) and the IPwaveform (Resp)
for the selected IP alarm. Note that the ECG signal in lead II, which is used by the IP algorithm, is clean. However, the IP waveform is flat therefore, the RR of 0, likely due to poor skin
electrode contact, that is sufficient for an ECG signal but not the IP algorithm, or shallow breathing.
B. The left side of the figure shows several IP RR parameter limit alarms (low and high) in an intensive care unit patient. The highlighted IP alarm is for a high parameter RR alarm (RESP
41 > 30; where 41= RR and 30= the parameter limit alarm setting). The panel to the right of the alarm is a one-minute tracing of ECG signals (leads I, II, II and V1) and the IPwaveform
(Resp). At the beginning and end of the IP tracing, motion artifact and 60-cycle interference in lead II is illustrated. Based on the IP algorithm, the result is a high RR alarm. Note that the IP
waveform improves somewhatwhen the artifact and 60-cycle interference are no longer present (middle). Theflags are applied by the vendor's algorithm to denote inspiration (upward)
and expiration (downward) during breathing.
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<40 s ± 1 s. These variables were examined by RR type (i.e., normal,
low, and high) and are summarized below.

Normal RR (between 12 and 20 bpm)
The mean age of the 50 patients in the normal RR group was 60.14

(±18.01) years, 52% were male, and 66% were white (Table 1). Forty
percent had documented cognitive impairment, 18% were current
smokers, 42% had mechanical ventilation, and 40% were admitted to
the neurological ICU.

Low RR (≤5 bpm)
The mean age of the 50 patients in the low RR group was 61.80

(±16.89) years, 56% were male, and 60% were white. In this group,
28% had cognitive impairment, 10%were current smokers, 50% hadme-
chanical ventilation, and 36%were admitted to themedical-surgical ICU.

High RR (≥30 bpm)
The mean age of the 50 patients in the high RR group was 60.86

(±16.13) years, 58% were male, and 62% were white. In this group,
48% had cognitive impairment, 24% were current smokers, 36% had
mechanical ventilation, and 42%were admitted to the neurological ICU.
19
Bland Altman analysis

The results of the Bland Altman analysis are presented in Table 2.
Scatter plots and Bland-Altman plots are shown in Fig. 2A–C. These fig-
ures illustrate the distribution and agreement between the two
methods for normal, low, and high RR.

Normal RR (between 12 and 20 bpm)
For normal RR, a significant bias difference of−1.00 ± 2.11 (95% CI

−1.60 to −0.40) and LOA of −5.13 to 3.13 were found (Table 2). The
LOA showed that the RR were within three and five bpm. Fig. 2A
shows the scatter plot and Bland-Altman analysis for the normal RR
comparisons. The regression line through the points was not significant
(p=0.088). The Bland Altman plot indicates close agreement between
the two methods for normal RR.

Low RR (≤5 bpm)
For low RR, a significant bias difference of −16.54 ± 6.02 (95% CI:

−18.25 to −14.83) and a 95% LOA of −28.33 to −4.75 were found
(Table 2). As illustrated on the scatterplot (Fig. 2B), the combined-EDR
RR was always higher than the IP RR. Note that the points on the



Table 1
Demographic and clinical characteristics of 100 intensive care patients by respiratory rate
(RR).

Characteristics Normal RR
(≥12 to ≤ 20 bpm)

Low RR
(≤5 bpm)

High RR
(≥30 bpm)

n = 50 n = 50 n = 50

Demographic characteristics
Age (mean ± SD, in years) 60.14 ± (18.01) 61.80 ± 16.89 60.86 ± 16.13

n (%) n (%) n (%)
Sex
Male 26 (52.0) 28 (56.0) 29 (58.0)
Female 24 (48.0) 22 (44.0) 21(42.0)

Race
Asian 6 (12.0) 8 (16.0) 7 (14.0)
Black/African American 5 (10.0) 6 (12.0) 8 (16.0
White 33 (66.0) 30 (60.0) 31 (62.0)
Unknown or decline 6 (12.0) 6 (12.0) 4 (8.0)

Clinical characteristics
BMI (mean ± SD, kg/m2) 26.72 ± 4.73 26.84 ± 4.83 29.50 ± 9.79
Current smoker 9 (18.0) 5 (10.0) 12 (24.0)
Documented cognitive
impairment

20 (40.0) 19 (28.0) 24 (48.0)

Tremor 3 (6.0) 2 (4.0) 5 (10.0)
Intensive care unit type
Cardiac (16 beds) 13 (26.0) 16 (32.0) 11 (22.0)
Medical-Surgical (32 beds) 17 (34.0) 18 (36.0) 18 (36.0)
Neurological (29 beds) 20 (40.0) 16 (32.0) 21 (42.0)

Mechanical ventilation 21 (42.0) 25 (50.0) 18 (36.0)

Abbreviation: BMI = body mass index; bpm = breaths per minute; IQR = interquartile
range; kg = kilogram; m2 = meter squared; RR = respiratory rate; SD = standard
deviation.
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Bland-Altman plot are essentially distributed in two lines. This pattern is
seen because nearly all of the IP values were RRs of 0 or 5, with the ex-
ception of two single pointswith ameasure of 4. The regression linewas
significant (−1.26; 95% CI -1.62 to −0.89; p < 0.05).

High RR (≥30 bpm)
For high RR, a significant bias difference of 17.94 ± 12.01 (95% CI:

14.53 to 21.35) and 95% LOA of −5.60 to 41.48 were found (Table 2).
Fig. 2C shows the scatter plot and Bland-Altman plot for high RR com-
parisons. As illustrated in the scatterplot, the combined-EDR RR was al-
ways lower with the exception of one comparison. A test of a regression
line through the points did not indicate a significant slope (p = 0.87).
Fig. 3 illustrates the one outlier patient who had an IP RR of 30 bpm
and a combined-EDR RR of 50 bpm. The IP RR appears to be accurate de-
spite motion artifact. However, it is not clear which of physiologic sig-
nals used in the combined-EDR RR algorithm was driving the RR.
However, the frequent premature ventricular complexes seen through-
out the tracing are a likely source.

Discussion

This study is the first to evaluate, in a group of ICU patients, the level
of agreement between two algorithm-based methods to measure RR,
the IP method and a novel combined-EDR method that uses an algo-
rithm that combines signals from the IP, SpO2, ECG waveforms and
the myogram. Good agreement was found between the two methods
for normal RR. An inverse relationship was found between the two
methods for both the low and high RR comparisons.
Table 2
Mean difference and limits of agreement for normal, low and high respiratory rate comparing

Patient group Bias Mean (SD) 95% CI of the bias

Normal RR −1.00 (2.11) −1.60 to −0.40
Low RR −16.54 (6.02) −18.25 to −14.83
High RR 17.94 (12.01) 14.53 to 21.35

Abbreviations: CI = confidence interval; LOAs = limits of agreement; RR = respiratory rate; S
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For normal RR, the upper and lower LOA were within three to five
bpm, which is clinically acceptable. Agreement between the two RR
methods was found for patients who were both tachypneic and
bradypneic. Figs. 4 A and B are examples of IP and ECG tracings from
two patients in our study, one with tachypnea (33 bpm) and one with
bradypnea (9 bpm). Based on our findings, it is reasonable to suggest
that the IP and combined-EDR methods are comparable not only
when measuring RR within the normal range (i.e., between 12 and
20 bpm) but in patients with tachypnea and bradypnea. However, be-
causewe did not simultaneously assess RR using VAmethod, thesefind-
ings warrant confirmation using this gold standard. Despite this
limitation, based on our findings for normal RR, albeit in a small sample
of ICU patients, we were able to make comparisons with some level of
confidence between the IP and combined-EDR method for both low
and high RRs.

For low RRs, compared to the IPmethod the combined-EDRmethod
was consistently higher. Thisfinding is consistentwith prior studies that
show that themajority of low IP RRs are false [7,38] primarily due to low
frequency signals that saturate the ECG leads with noise and fail to cap-
ture the impedance signal [39]. As illustrated in Fig. 1A, low frequency IP
signals can increase the number of false low RRs [40,41]. In addition,
shallow breathing can be misinterpreted by the IP method as a low RR
and contribute to the number false low RR alarms [41]. Several studies
have examined why low RR occurs when using the IP method. In one
study, cardiac oscillations (i.e., “small waves produced by heartbeats
that are superimposed on the pressure and flow signals at the airway
opening”) thus, interfering with the IP signal and led to an increased
number of false low RRs [38]. In healthy people, several factors can im-
pact the IP signal including: hemodynamic properties [42]; RSA [43];
blood pressure [44]; stroke volume [45]; pulmonary vascular resistance
[43]; pulmonary blood flow [46]; and lung volume [47]. These factors
are attenuated in patients with cardiac and/or respiratory diseases,
which are common in hospitalized patients. Moreover, the IP signal
can be effected by body position changes and/or talking [1,6,27,48].
Accurate and reliable identification of low RR is extremely important
in hospitalized patients who are susceptible to bradypnea because
of the administration of medications that compromise breathing (e.g.,
sedatives, opioids), sleep disordered breathing [49,50], or acute respira-
tory compromise [4,19,51]. The combined-EDR algorithm, that uses
multiple physiologic signals to derive RR, appears to be an improvement
over the IP method. However, the combined-EDR method requires
further validation against the VA method in a larger sample.

When comparing the IP method to the combined-EDR method for
high RR, in nearly every comparison the combined-EDR RR was lower.
Fig. 5 illustrates an outlier patient with an IP RR of 83 bpm caused by
motion and cardiac artifact. This example supports previous studies
that identified that bothmotion [8,9,39] and cardiac artifact, due to aor-
tic blood flow picked up by the IP signal, results in an increased number
of false high RR readings [42,52]. Because the combined-EDR algorithm
uses a combination of several different physiologic signals this method
appears to minimize this problem. With one exception, the RR derived
using the combined-EDR were consistently lower than the IP method.
The one exception was a patient with frequent abberantly conducted
beats with a wide QRS. This finding suggests that the combined-EDR
algorithmmaywarrantmodifications to accurately assess high RR in pa-
tients with intermittent wide QRSs. However, our data suggest that
overall the combined-EDR method may reduce the number of false
impedance pneumography to the combined-electrocardiographic derived method.

95% LOA Lower, Upper Regression Test (p-value)

−5.13 to 3.13 0.088
−28.33 to - 4.75 −1.26; 95% CI -1.62 to −0.89; p < 0.05*
−5.60 to 41.48 0.87

D = standard deviation.



Fig. 2. A, B, C. Scatterplots (left) and Bland-Altman plots (right) for normal, low, and high respiratory rate (RR) that compare impedance pneumography (IP) to the combined-
electrocardiographic derived-respiration (combined-EDR) method. The heavier dashed lines in the Bland-Altman figures represent the mean difference (middle line) and the upper
and lower limits for 95% of the data. The lighter dashed line is the 95% confidence interval (CI) for each of these lines. The red lines are sunflower plots and show when more than one
value occurs at this location. For example, a three-armed sunflower plot indicates that three individual values occured at this one location.
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high RR alarms associated with motion and/or cardiac artifact. Future
studies need to determine whether refinements in the combined-EDR
algorithm are needed to account for potential ECG and/or physiologic
signal confounders.

A noteworthy finding from our study is the number of patients with
a RR above the physiologic upper limit of “normal” (i.e., >20 bpm). An
21
examination of the normal RR comparisons, that showed good agree-
ment between the IP and combined-EDR methods, found 17 of
25 patients (68%) with a RR >20 bpm. This finding highlights that
tachypnea is a common problem in ICU patients. However, this finding
warrants confirmation using VA and capnography (end tidal CO2) the
non-invasive and device driven gold standard methods, respectively. If



Fig. 3. Example of amismatch of respiratory rate (RR) between the impedance pneumography (IP) and the combined-electrocardiographic (EDR)method. Shown is a one-minute tracing
of ECG leads I, II, III, V1 and the IPwaveform (Resp). The IPmethod determined a RR of 30 breaths perminute (bpm) and the combined-EDR determined a RR of 50 bpm. Note that despite
60-cyle interference in lead II, which the IP used to calculate RR, the IP signal is clean suggesting good skin electrode contact. The combined-EDR RR of 50 is likely due to the frequent
abberantly conducted beats (lead II and III), which effected the QRS width used in this method.

Fig. 4. Illustrates the respiratory rate (RR)measured using impedance pneumography (IP) in two different intensive care unit patients during tachypnea (A) and bradypnea (B). Shown are
oneminute time periods with electrocardiographic (ECG) leads I, II, II, and V1 and the IP waveform (Resp). The IP waveform has an upward flag during inspiration and a downward flag
during expiration.
A. Patient with an IP RR of 33 breaths per minute (bpm). The combined-EDRmethod RR is 33 bpm. The patient's heart rate is 150 beats/min, which when combined with the tachypnea
suggests this patient is in acute distress.
B. Patientwith an IP RR of 9 bpm. The combined-EDRmethod RR is 9 bpm.While the IPwaveform is not as smooth as seen in A (above), the upward and downward flags are present. This
patient's heart rate is 60 beats/min, with pre-mature atrial complexes and a short run of supra-ventricular tachycardia.
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Fig. 5. Illustrates a high respiratory rate (RR) measured using impedance pneumography (IP) in an intensive care unit patient. The IP RR is 83 breaths per minute (bpm), the combined-
electrocardiographic RR is 15 bpm. Shown is a one-minute time periodwith ECG leads I, II, II, and V1 and the IPwaveform (RESP). The initial IPwaveform is likely reading a high RR due to
cardiac artifact (see upward flags and downward flags on IP waveform) that is then disrupted by motion artifact.
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confirmed, this finding has important implications both clinically (true
tachypnea) and when setting high RR parameter alarms, that are com-
monly set at >30 bpm to decrease the number of RR alarms. Setting
thehigh RR parameter alarm above>30bpmmaymiss clinically impor-
tant respiratory distress.

Limitations

Several limitationswarrant consideration.Whilewe providenew in-
formation on the agreement between the IP RR method and a novel
multi-physiological signal algorithm for RR measurement, we did not
use a gold standard method (i.e., visual assessment [non-invasive], or
capnography [device driven]) to compare the twomethods. In addition,
because we used only one monitoring vendor, our findings may not be
generatable to other monitoring manufacturers. The study's retrospec-
tive design did not allow us to evaluate the patient scenario and/or
alarm adjustments made by clinicians, that would add important con-
text to our findings. In addition, we were unable to reliably identify
the dates and times when a patient was on a ventilator during our RR
comparisons. Future research should evaluate data on RR from ventila-
tors as another comparator. Lastly, because some of our ICU patients
were intubated and/or comatose, comparisons between the two
methods in non-ICU patients is warranted. Despite these limitations,
this study is the first to evaluate the use of a novel physiologic-based
RR algorithm to derive RR. Given that these data exist in current bedside
monitors, this approach could be easily integrated into existing moni-
toring systems and potentially decrease alarm fatigue due to frequent
RR alarms.

Conclusions

While confirmation of our findings is warranted, our data suggest
that the combined-EDR method is comparable to the IP method to de-
rive normal RR. For lowRR, the combined-EDRmethodwas consistently
higher than the IP method. Calculating low RR using the IP methodmay
be influenced by low frequency signals and lead to inaccurate RR. How-
ever, low RR can occur with shallow breathing, which would be of
clinical significance in hospitalized patients at risk for respiratory com-
promise. By using multiple physiologic signals, more accurate low RR
may be detected with the combined-EDR method. The combined-EDR
RR was almost always lower than high IP RR. False high RRs, using the
IP method, caused by motion and/or cardiac artifact are common and
may lead to alarm fatigue in clinicians. However, we found RRs with
good agreement between the two methods often exceeded the upper
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limit of normal (i.e., <20 bpm), suggesting tachypnea is common
among ICU patients. This finding is important, because it is common
practice for hospitals to use a default alarm limit setting of ≥30 bpm
in an effort to minimize RR alarms. Our finding suggests that true
tachypnea may be missed by using this default setting. This study
should be replicated in a larger sample, in both ICU and non-ICU
patients, and include confirmation with visual and device driven gold
standard methods.
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